Skip to main content

DeepSparse

This page covers how to use the DeepSparse inference runtime within LangChain. It is broken into two parts: installation and setup, and then examples of DeepSparse usage.

Installation and Setup

There exists a DeepSparse LLM wrapper, that provides a unified interface for all models:

from langchain_community.llms import DeepSparse

llm = DeepSparse(
model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none"
)

print(llm.invoke("def fib():"))
API Reference:DeepSparse

Additional parameters can be passed using the config parameter:

config = {"max_generated_tokens": 256}

llm = DeepSparse(
model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none",
config=config,
)

Was this page helpful?


You can leave detailed feedback on GitHub.